The i v

21.1

CHAPTER

This chapter presents an in-depth examination of the Linux operating system.
By examining a complete, real system, we can see how the concepts we have
discussed relate both to one another and to practice.

Linux is a version of UNIX that has gained popularity in recent years. In this
chapter, we look at the history and development of Linux and cover the user
and programmer interfaces that Linux presents—interfaces that owe a great
deal to the UNIX tradition. We also discuss the internal methods by which Linux
implements these interfaces. Linux is a_rapidly evolving operating system.
This chapter describes developments through the Linux 2.6 kernel, which was
released in late 2003.

Linux looks and feels much like any other UNIX system; indeed, UNIX
compatibility has been a major design goal of the Linux project. However,
Linux is much younger than most UNIX systems. Its development began in
1991, when a Finnish student, Einus Torvalds, wrote and chtistened Linux,
a small but self-contained kernel for the 80386 processor, the first true 32-bit
processor in Intel’s range of PC-compatible CPUs.

Early in its development, the Linux source code was made available free
on the Internet. As a result, Linux’s history has been one of collaboration by
many users from all around the world, corresponding almost exclusively over
the Internet. From an initial kernel that partially implemented a small subset of
the UNIX system services, the Linux system has grown to include much UNIX
functionality.

In its early days, Linux development revolved largely around the central
operating-system kernel—the core, privileged executive that manages ali
systemn resources and that interacts directly with the computer hardware.
We need much more than this kernel to produce a full operating system,
of course. It is useful to make the distinction between the Linux kernel and
a Linux system. The Linux kernel is an entirely original piece of software
developed from scratch by the Linux community. The Linux system, as we
know it today, includes a multitude of companents, some written from scratch,

713

714

Chapter 21

others borrowed from other development projects, and still others created in
collaboration with other teams.

The basic Linux system is a standard environment for applications and
user programming, but it does not enforce any standard means of managing
the available functionality as a whole. As Linux has matured, a need has arisen
for another layer of functionality on top of the Linux system. This need has
been met by various Linux distributions. A Linux distribution includes al] the
standard components of the Linux system, plus a set of administrative tools
to simplify the initial installation and subsequent upgrading of Linux and to
manage installation and removal of other packages on the system. A modern
distribution also typically includes tools for management of file systems,
creation and management of user accounts, administration of networks, web
browsers, word processors, and so on.

21.1.1 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May
14, 1991 It had no networking, ran only on 80386-compatible Intel processors
and PChardware, and had extremely limited device-driver support. The virtual
memory subsystem was also fairly basic and included no support for memory-
mapped files; however, even this early incarnation supported shared pages
with copy-on-write. The only file system supported was the Minix file system
—the first Linux kernels were cross-developed on a Minix platform. However,
the kernel did implement proper UNIX processes with protected address spaces.

The next milestone version, Linux 1.0, was released on March 14, 1994.
This release culminated three years of rapid development of the Linux kernel.
Perhaps the single biggest new feature was networking: 1.0 included support
for UNIX’s standard TCP/ [P networking protocols, as well as a BSD-compatible
socket interface for networking programming. Device-driver support was
added for running IP over an Ethernet or (using PPP or SLIP protocols) over
serial lines or modems,

The 1.0 kernel also included a new, much enhanced file system without the
limitations of the original Minix file system and supported a range of 5CSI con-
trollers for high-performance disk access. The developers extended the virtual
memory subsystem to support paging to swap files and memory mapping of
arbitrary files (but only read-only memory mapping was implemented in 1.0).

A range of extra hardware support was also included in this release.
Although still restricted to the Intel PC platform, hardware support had grown
to include floppy-disk and CD-ROM devices, as well as sound cards, a range
of mice, and international keyboards. Floating-point emulation was provided
in the kernel for 80386 users who had no 80387 math coprocessor; System
V UNIX-style interprocess communication (IPC), including shared memory,
semaphores, and message queues, was implemented. Simple support for
dynamically loadable and unloadable kernel modules was supplied as well.

At this point, development started on the 1.1 kernel stream, but numerous
bug-fix patches were released subsequently against 1.0. A pattern was adopted
as the standard numbering convention for Linux kernels. Kernels with an odd
minor-version number, such as 1.1, 1.3,and 2.1, are development kernels; even-
numbered minor-version numbers are stable production kernels. Updates

211 715

against the stable kernels are intended only as remedial versions, whereas the
development kernels may include newer and relatively untested functionality.

In March 1995, the 1.2 kernel was released. This release did not offer
nearly the same improvement in functionality as the 1.0 release, but it did
support a much wider variety of hardware, including the new PCI hardware
bus architecture. Developers added another PC-specific feature—support for
the 80386 CPU's virtual 8086 mode-—to allow emulation of the DOS operating
system for PC computers. They also updated the networking stack to provide
support for the IPX protocol and made the IP implementation more complete
by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution
for Linux 1.2 included partially implemented suppeort for SPARC, Alpha, and
MIPS CPUs, but full integration of these other architectures did not begin until
after the 1.2 stable kernel was released.

The Linux 1.2 release concentrated on wider hardware support and more
complete implementations of existing functionality. Much new functionality
was under development at the time, but integration of the new code into the
main kernel scurce code had been deferred until after the stable 1.2 kernel had
been released. As a result, the 1.3 development stream saw a great deal of new
functionality added to the kernel.

This work was finally released as Linux 2.0 in June 1996. This release
was given a major version-number increment on account of two major new
capabilities: support for multiple architectures, including a fully 64-bit native
Alpha port, and support for multiprocessor architectures. Linux distributions
based on 2.0 are also available for the Motorola 68000-series processors and for
Sun’s SPARC systems. A derived version of Linux running on top of the Mach
microkernel also runs on PC and PowerMac systems.

The changes in 2.0 did not stop there. The memory-management code
was substantially improved to provide a unified cache for file-system data
independent of the caching of block devices. As a result of this change, the
kernel offered greatly increased file-system and virtual memory performance.
For the first time, file-system caching was extended to networked file systems,
and writable memory-mapped regions also were supported.

The 2.0 kernel also included much improved TCP/IP performance, and a
number of new networking protocols were added, including AppleTalk, AX.25
amateur radio networking, and ISDN support. The ability to mount remote
netware and SMB (Microsoft LanManager) network volumes was added.

Other major improvements in 2.0 were support for internal kernel threads,
for handling dependencies between loadable modules, and for automatic
loading of modules on demand. Dynamic configuration of the kernel at run
time was much improved through a new, standardized configuration interface.
Additional new features included file-system quotas and POSIX-compatible
real-time process-scheduling classes.

Improvements continued with the release of Linux 2.2 in January 1999. A
port for UltraSPARC systems was added. Networking was enhanced with more
flexible firewalling, better routing and traffic management, and support for
TCP large window and selective acks. Acorn, Apple, and NT disks could now
be read, and NFS was enhanced and a kernel-mode NF$ daemon added. Signal
handiing, interrupts, and some 1/0 were locked at a finer level than before to
improv: symmetric multiprocessor (SMP) performance.

716

Chapter 21

Advances in the 2.4 and 2.6 releases of the kernel include increased support
for SMP systems, journaling file systems, and enhancements to the memory-
management system. The process scheduler has been modified in version 2.6,
providing an efficient O(1) scheduling algorithm. In addition, the Linux 2.6
kernel is now preemptive, allowing a process to be preempted while running
in kernel mode. :

211.2 The Linux System

In many ways, the Linux kernel forms the core of the Linux project, but other
components make up the complete Linux operating system. Whereas the Linux
kernel is composed entirely of code written from scratch specifically for the
Linux project, much of the supporting software that makes up the Linux
system is not exclusive to Linux but is common to a number of UNIX-like
operating systems. In particular, Linux uses many tools developed as part
of Berkeley’s BSI> operating system, MIT's X Window System, and the Free
Software Foundation’s GNU project.

This sharing of tools has worked in both directions. The main system
libraries of Linux were originated by the GNU project, but the Linux community
greatly improved the libraries by addressing omissions, inefficiencies, and
bugs. Other components, such as the GNU C compiler (gcc), were already
of sufficiently high quality to be used directly in Linux. The networking-
administration tools under Linux were derived from code first developed for
4.3 BsD, but more recent BSD derivatives, such as FreeBSD, have borrowed code
from Linux in return. Examples include the Intel floating-point-emulation math
library and the PC sound-hardware device drivers.

The Linux system as a whole is maintained by a loose network of
developers collaborating over the Internet, with smali groups or individuals
having responsibility for maintaining the integrity of specific components. A
small number of public Internet file-transfer-protocol (ftp) archive sites act as de
facto standard repositories for these components, The File System Hierarchy
Standard document is also maintained by the Linux community as a means of
keeping compatibility across the various system components. This standard
specifies the overall layout of a standard Linux file system; it determines
under which directory names configuration files, libraries, system binaries,
and run-time data files should be stored.

21.1.3 Linux DistribUtions

In theory, anybody can install a Linux system by fetching the latest revisions
of the necessary system components from the ftp sites and compiling them.
In Linux’s early days, this operation was often precisely what a Linux user
had to carry out. As Linux has matured, however, various individuals and
groups have attempted to make this job less painful by providing a standard,
precompiled set of packages for casy instaltation.

These collections, or distributions, include much more than just the
basic Linux system. They typically include extra system-installation and
management utilities, as well as precompiled and ready-to-install packages
of many of the common UNIX tools, such as news servers, web browsers,
text-processing and editing tools, and even games.

21.2

21.2 e 717

The first distributions managed these packages by simply providing
a means of unpacking all the files into the appropriate places. One of
the impoertant contributions of modern distributions, however, is advanced
package management. Today’s Linux distributions include a package-tracking
database that allows packages to be installed, upgraded, or removed painlessly.

The SLS distribution, dating back to the early days of Linux, was the first
collection of Linux packages that was recognizable as a complete distribution.
Although it could be installed as a single entity, SLS lacked the package-
management tools now expected of Linux distributions. The Slackware
distribution represented a great improvement in overall quality, even though it
also had poor package management; it is still one of the most widely instatled
distributions in the Linux community.

Since Slackware’s release, many commercial and noncommercial Linux
distributions have become available. Red Hat and Debian are particularly
popular distributions; the first comes from a commercial Linux support
company and the second from the free-software Linux community. Other
commercially supported versions of Linux include distributions from Caldera,
Craftworks, and WorkGroup Solutions. A large Linux following in Germany
has resulted in several dedicated German-language distributions, including
versions from SuSE and Unifix. There are too many Linux distributions in
circulation for us to list all of them here. The variety of distributions does not
prohibit compatibility across Linux distributions, however. The RPM package
file format is used, or at least understood, by the majority of distributions, and
commercial applications distributed in this format can be installed and run on
any distribution that can accept RPM files.

21.1.4 Linux Licensing

The Linux kernel is distributed under the GNU general public license (GPL),
the terms of which are set out by the Free Software Foundation. Linux is not
public-domain seftware. Public domain implies that the authors have waived
copyright rights in the software, but copyright rights in Linux code are still
held by the code’s various authors. Linux is free software, however, in the sense
that people can copy it, modify it, use it in any manmer they want, and give
away their own copies, without any restrictions.

The main implications of Linux’s licensing terms are that nobody using
Linux, or creating her own derivative of Linux (a legitimate exercise), can
make the derived product proprietary. Software released under the GPL cannot
be redistributed as a binary-only product. If you release software that includes
any components covered by the GPL, then, under the GPL, you must make
source code available alongside any binary distributions. (This restriction does
not prohibit making—or even selling—binary-only software distributions, as
long as anybody who receives binaries is also given the opportunity to get
source code, for a reasonable distribution charge.)

In its overall design, Linux resembles any other traditional, nenmicrokernel
UNIX implementation. It is a multiuser, multitasking system with a full set
of UNIX-compatible tools. Linux’s file system adheres to traditional UNIX

718

Chapter 21

semantics, and the standard UNIX networking model is implemented fully.
The internal details of Linux’s design have been influenced heavily by the
history of this operating system’s development.

Although Linux runs on a wide variety of platforms, it was developed
exciusively on PC architecture. A great deal of that early development was
carried out by individual enthusiasts, rather than by well-funded development
or research facilities, so from the start Linux attempted to squeeze as much
functionality as possible from limited resources. Today, Linux can run happily
on a multiprocessor machine with hundreds of megabytes of main memory
and many gigabytes of disk space, but it is still capable of operating usefully
in under 4 MB of RAM. . :

As PCs became more powerful and as memory and hard disks became
cheaper, the original, minimalist Linux kernels grew to implement more UNIX
functionality. Speed and efficiency are still important design goals, but much
of the recent and current work on Linux has concentrated on a third major
design goal: standardization. One of the prices paid for the diversity of UNIX
tmplementations currently available is that source code written for one flavor
may not necessarily compile or run correctly on another. Even when the same
system calls are present on two different UNIX systems, they do not necessarily
behave in exactly the same way. The POSIX standards comprise a set of
specifications of different aspects of operating-system behavior. There are POSIX
documents for common operating-system functionality and for extensions
such as process threads and real-time operations. Linux is designed to be
compliant with the relevant POSIX documents; at least two Linux distributions
have achieved official POSIX certification.

Because it presents standard interfaces to both the programmer and the,

user, Linux presents few surprises to anybody familiar with UNIX. We do
not detail these interfaces here. The sections on the programmer interface
{Section A.3) and user interface (Section A.4) of BSD apply equally well to
Linux. By default, however, the Linux programming interface adheres to SVR4
UNIX semantics, rather than to BSD behavior. A separate set of libraries is
available to implement BSD semantics in places where the two behaviors are
significantly different.

Many other standards exist in the UNIX world, but full certification of
Linux against them is sometimes stowed because they are often available
only for a fee, and the expense inwolved in certifying an operating system’s
compliance with most standards is substantial. However, supporting a wide
base of applications is important for any operating system, so implementation
of standards is a major goal for Linux development, even if the implementation
isnot formally certified. In addition to the basic POSIX standard, Linux currently
supports the POSIX threading extensions—Pthreads—and a subset of the POSIX

extensions for real-time process control.]

2121 Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most
traditional UNIX implementations:

\/&n’el. The kernel is responsible for maintaining all the important
: abstractions of the operating system, Yncluding such things as virtual

mermory and processes.

21.2 R T 719

i System libraries. The system libraries define a standard set of functions
through which applications can interact with the kernel. These functions
implement much of the operating-system functionality that does not need
the full privileges of kernel code.

System utilities. The system utilities are programs that perform individ-
ual, specialized management tasks\3ome system utilities may be invoked
just once to mitialize and conﬁgubssome aspect of the systery others—
known as daemons in UNIX terminology —may run permanently, handling
such tasks as responding to incoming network connections, accepting
logon requests from terminals, and updating log files.

Figure 21.1 illustrates the various components that make up a full Linux
system. The most important distinction here is between the kernel and
everything else. All the kernel code executes in the processor’s privileged
mode with full access to all the physical resources of the computer. Linux
refers to this privileged mode as kernel mode\Under Linux, no user-mode
code is built into the kernel{Any operating-system-support code that does not
need to run in kernel mode\is placed into the system libraries instead.

Although various modern operating systems have adopted a shessage-
passing architecture for their kernel internals, Linux retains UNIX’s historical
moclel:i}z: kernel is created as a single, monolithic binary. The main reason is
to improve performance: Because all kernel code and data structures are kept in
a single address space, no coptext switches are necessary when a process calls
an operating-system functiony or when a hardware interrupt is delivered. Not
only the core scheduling aanir’mal memory code occupies this address space;
all kernel code, including all device drivers, file systems, and networking code,
is present in the same single address space.

Even though all the kernel components share this same melting pot, there
is still room for modularity. In the same way that user applications can load
shared libraries at run time to pull in a needed piece of code, so the Linux
kernel can load {and unload) modules dynamically at run time. The kernel
does not necessarily need to know in advance which modules may be loaded
—they are truly independent loadable components.

The Linux kernel forms the core of the Linux operating system)It provides

alkthe functionality necessary to run processes, and it provides sysfem services
system- user user
management rocesses utility compilers
programs P programs

system shared libraries

Linux kernel

loadable Kernel modules

Figure 21.1 Components of the Linux system.

720

21.3

Chapter 21

to give arbitrated and protected access to hardware resources. The kernel
implements all the features required to qualify as an operating system. On
its own, however, the operating system provided by the Linux kernel looks
nothing like a UNIX system. It is missing many of the extra features of UNIX,
and the features that it does provide are not necessarily in the format in which
a UNIX application expects them to appear. The operating-system interface
visible to running applications is not maintained directly by the kernel. Rather,
applications make calls to the system libraries, which in turn call the operating-
system services as necessary.

Qf‘:ystem libraries provide many types of functionality. At tha simplest
levelrthey allow applications to make kernel-systemn-service requeséMaking
a system call involves transferring control from unprivileged usep'mode to
privileged kernel mode; the details of this transfer vary from architecture to
architecture. The libraries take care of collecting the system-call arguments and,
if necessary, arranging those arguments in the special form necessary to make

the system call.
@e libraries may also provide more complex versions of the basic system
calls~For example, the C language’s buffered file-handling functions are all
implemented in the system libraries}:lfoviding more advanced control of file
I/O than the basic kernel system calls fhe libraries also provide routines that do
not correspond to system calls at all, such as sorting algorithms, mathematical
functions, and string-manipulation routines. All the functions necessary to
support the running of UNIX or POSIX applications are implemented here in the

systgm libraries.

(T’he Linux system includes a wide variety of user-mode programs—both
SYS tilities and user utilities} The system utilities include all the programs
necessary to initialize the systep, such as those to configure network devices
and to load kernel modules. Continually running server programs also count as
system utilities; such programs handle user login requests, incoming network

connections, and the printer queues.

z Not all the standard utilities serve key system-administration functions.
The X user environmeqt contains a large number of standard utilities to
do simple everyday taskZ}uch as listing directories, moving and deleting
files, and displaying the coritents of a file. More complex utilities can perform
text-processing functions, such as sorting textual data and performing pattern
searches on input text. Together, these utilities form a standard tool set that
users can expect on any UNIX system; although they do not perform any
operating-system function, they are an important part of the basic Linux
system.

The Linux kernel has the ability to load and unload arbitrary sections of kernel
code on demand. These loadable kernel modules run in privileged kernel mode
and as a consequence have full access to all the hardware capabilities of the
machine on which they run. In theory, there is no restriction on what a kernel
module is allowed to do; typically, a module might implement a device driver,
a file system, or a networking protocol.

21.3 C [Pheakdo 721

Kernel modules are convenient for several reasons. Linux’s source code is
free, so anybody wanting to write kernel code is able to compile a modified
kernel and to reboot to load that new functionality; however, recompiling,
relinking, and reloading the entire kernel is a cumbersome cycle to undertake
when you are developing a new driver. If you use kernel modules, you do not
have to make a new kernel to test a new driver —the driver can be compiled
on its own and loaded into the already-running kernel. Of course, once a new
driver is written, it can be distributed as a module so that other users can
benefit from it without having to rebuild their kernels.

This latter point has another implication. Because it is covered by the
GPL license, the Linux kernel cannot be released with proprietary components
added to it, unless those new components are also released under the GPL and
the source code for them is made available on demand. The kernel’s module
interface allows third parties to write and distribute, on their own terms, device
drivers or file systems that could not be distributed under the GPL.

Kernel modules allow a Linux system to be set up with a standard, minimal
kernel, without any extra device drivers built in. Any device drivers that
the user needs can be either loaded explicitly by the system at startup or
loaded automatically by the system on demand and unloaded when not in
use. For example, a CD-ROM driver might be loaded when a CD is mounted
and unloaded from memory when the CD is dismounted from the file system.

The module support under Linux has three components:

The module management allows modules to be loaded into memory and
to talk to the rest of the kernel.

The driver registration atlows modules to tell the rest of the kernel that
a new driver has become available.

A conflict-resolution mechanism allows different device drivers to
reserve hardware resources and to protect those resources from accidental
use by another driver.

21.3.1 Module Management

Loading a module requires more than just loading its binary contents into
kernel memory. The system must also make sure that any references the
module makes to kernel symbols or entry points are updated to point to the
correct locations in the kernel’s address space. Linux deals with this reference
updating by splitting the job of modute loading into two separate sections: the
management of sections of module code in kernel memory and the handling
of symbols that modules are allowed to reference.

Linux maintains an internal symbol table in the kernel. This symbol table
does not contain the full set of symbols defined in the kernel during the latter’s
compilation; rather, a symbol must be exported explicitly by the kernel. The set
of exported symbols constitutes a well-defined interface by which a module
can interact with the kernel.

Although exporting symbols from a kernel function requires an explicit
request by the programmer, no special effort is needed to import those symbols
into a module. A module writer just uses the standard external linking of the
Clanguage: Any external symbols referenced by the module but not declared

722

Chapter21 . ¢

by it are simply marked as unresolved in the final medule binary produced by
the compiler. When a moduile is to be loaded into the kernel, a system utility
first scans the module for these unresolved references. All symbols that still
need to be resolved are looked up in the kernel’s symbol table, and the correct
addresses of those symbols in the currently running kernel are substituted into
the module’s code. Only then is the module passed to the kernel for loading. If
the system utility cannot resolve any references in the module by looking them
up in the kernel’s symbol table, then the module is rejected.

The loading of the module is performed in two stages. First, the module-
loader utility asks the kernel to reserve a continuous area of virtual kernel
memory for the module. The kernel returns the address of the memory
allocated, and the loader utility can use this address to relocate the module’s
machine code to the correct loading address. A second system call then passes
the module, plus any symbal table that the new module wants to export, to the
kernel. The module itself is now copied verbatim into the previously allocated
space, and the kernel’s symbol table is updated with the new symbols for
possible use by other modules not yet loaded.

The final module-management component is the module requestor. The
kernel defines a communication interface to which a module-management
program can connect. With this connection established, the kernel will inform
the management process whenever a process requests a device driver, file
system, or network service that is not currently loaded and will give the
manager the opportunity to load that service. The original service request will
complete once the module is loaded. The manager process regularly queries
the kernel to see whether a dynamically loaded module is still in use and
unloads that module when it is no longer actively needed.

21.3.2 Driver Registration

Once amodule is loaded, it remains no more than an isolated region of memory
until it lets the rest of the kernel know what new functionality it provides.
The kernel maintains dynamic tables of all known drivers and provides a
set of routines to allow drivers to be added to or removed from these tables
at any time. The kernel makes sure that it calls a module’s startup routine
when that module is loaded and calls the module’s cleanup routine before
that module is unloaded: These routines are responsible for registering the
module’s functionality.

A module may register many types of drivers and may register more than
one driver if it wishes. For example, a device driver might want to register two
separate mechanisms for accessing the device. Registration tables include the
following ttems:

Device drivers. These drivers include character devices (such as printers,
terminals, and mice), block devices (including all disk drives), and network
interface devices.

File systems. The file system may be anything that implements Linux’s
virtual-file-system calling routines. It might implement a format for storing
files on a disk, but it might equally well be a network file system, such as
NFS, or a virtual file system whose contents are generated on demand, such
as Linux’s /proc file system.

21.4

214 : " : 723

> Network protocols. A module may implement an entire networking
protocol, such as IPX, or simply a new set of packet-filtering rules for a
network firewall.

Binary format. This format specifies a way of recognizing, and loading, a
new type of executable file.

In addition, a module can register a new set of entries in the sysct! and /proc
tables, to allow that module to be configured dynamically (Section 21.7.4).

21.3.3 Conflict Resolution

Commercial UNIX implemeritations are usually sold to run on a vendor’s
own hardware. One advantage of a single-supplier solution is that the
software vendor has a good idea about what hardware configurations are
possiblg. IBM PC hardware, however, comes in a vast number of configurations,
with latge numbers of possible drivers for devices such as network cards,
sCsI controllers, and video display adapters. The problem of managing the
hardware configuration becomes more severe when modular device drivers
are supported, since the currently active set of devices becomes dynamically
variable. _

g Linux provides a central conflict-resolution mechanism to help arbitrate
a to certain hardware resources. [ts aims are as follows:

To prevent modules from clashing over access to hardware resources

To prevent autoprobes—device-driver probes that auto-detect device
configuration—from interfering with existing device drivers

To resolve conflicts among multiple drivers trying to access the same
hardware—for example, as when both the parallel printer driver and the
parallel-line IP (PLIP) network driver try to talk to the parallel printer port

_ To these ends, the kernel maintains lists of allocated hardware resources.
T\;rﬁlac has a limited number of possible /0 ports (addresses in its hardware
170 address space), interrupt lines, and DMA charmelawhon any device driver
wants to access such a resource, it is expected to reserve the resource with
the kernel database first. This requirement incidentally allows the system
administrator to determine exactly which resources have been allocated by

which driver at any given point.

Q}Lmodule is expected to use this mechanism to reserve in advance any
hardware resources that it expects to use. If the reservation is rejected because
the resource is not present or is already in use, then it is up to the module
to decide how to proceed. It may fail its initialization and request that it be
unloaded if it cannot continue, or it may carry on, using alternative hardware
resources.

A process is the basic context within which all user-requested activity is
serviced within the operating svstem. To be compatible with other UNIX

724

Chapter 21

systems, Linux must use a process model similar to those of other versions
of UNIX. Linux operates differently from UNIX in a few key places, however. In
this section, we review the traditional UNIX process model from Section A.3.2
and introduce Linux’s own threading model.

21.4.1 The fork() and exec{) Process Model

The basic principle of UNIX process management is to separate two operations:
the creation of a process and the running of a new program. A new process
is created by the fork() system call, and a new program is run after a call to
exec(). These are two distinctly separate functions. A new process may be
created with fork () without a new program being run—the new subprocess
simply continues to execute exactly the same program that the first, parent
process was running. Equally, running a new program does not require that
a new process be created first: Any process may call exec () at any time. The
currently running program is immediately terminated, and the new program
starts executing in the context of the existing process.

This model has the advantage of great simplicity. Rather than having to
specify every detail of the environment of a new program in the system call that
runs that program, new programs simply run in their existing environment, If
a parent process wishes to modify the environment in which a new program
is to be run, it can fork and then, still running the original program in a child
process, make any system calls it requires to modify that child process before
finally executing the new program.

Under UNIX, then, a process encompasses all the information that the
operating system must maintain to track the context of a single execution of a
single program. Under Linux, we can break down this context into a number of
specific sections. Broadly, process properties fall into three groups: the process
identity, environment, and context.

214.1.1 Process Identity

A process identity consists mainly of the following items:

Process ID (PID). Each process has a unique identifier. PIDs are used to
specify processes to the operating system when an application makes
a system call to signal, modify, or wait for another process. Additional
identifiers associate the process with a process group (typically, a tree of
processes forked by a single user command) and login session.-

Credentials. Each process must have an associated user ID and one or more
group 1Ds (user groups are discussed in Section 10.6.2) that determine the
rights of a process to access system resources and files.

Personality. Process personalities are not traditionally found on UNIX
systems, but under Linux each process has an associated personality
identifier that can modify slightly the semantics of certain system calls.
Personalities are primarily used by emulation libraries to request that
system calls be compatible with certain flavors of UNIX.

Most of these identifiers are under limited control of the process itself.
The process group and session identifiers can be changed if the process

214 725

wants to start a new group or session. Its credentials can be changed, subject
to appropriate security checks. However, the primary PID of a process is
unchangeable and uniquely identifies that process until termination.

21.4.1.2 Process Environment

A process’s environment is inherited from its parent and is composed of two
null-terminated vectors: the argument vector and the environment vector. The
argument vector simply lists the command-line arguments used to invoke the
running program; it conventionally starts with the name of the program itself.
The environment vector is a list of “NAME=VALUE" pairs that associates named
environment variables with arbitrary textual values. The environment is not
held in kernel memory but is stored in the process’s own user-mode address
space as the first datum at the top of the process’s stack.

The argument and environment vectors are not altered when anew process
is created: The new child process will inherit the environment that its parent
possesses. However, a completely new environment is set up when a new
program is invoked. On calling exec (), a process must supply the environment
for the new program. The kernel passes these environment variables to the next
program, replacing the process’s current environment. The kernel otherwise
leaves the environment and command-line vectors alone —their interpretation
is left entirely to the user-mode libraries and applications.

The passing of environment variables from one process to the next and the
inheriting of these variables by the children of a process provide flexible ways
to pass information to components of the user-mode system software. Various
important environment variables have conventional meanings to related parts
of the system software. For example, the TERK variable is set up to name the
type of terminal connected to a user’s login session; many programs use this
variable to determine how to perform operations on the user’s display, such as
moving the cursor and scrolling a region of text. Programs with multilingual
support use the LANG variable to determine in which language to display
system messages for programs that include multilingual support.

The environment-variable mechanism custom tailors the operating system
on a per-process basis, rather than for the system as a whole. Users can choose
their own languages or select their own editors independently of one another.

21.4.1.3 Process Context

The process identity and environment properties are usually set up when a
process is created and not changed until that process exits. A process may
choose to change some aspects of its identity if it needs to do so, or it may
alter its environment. In contrast, process context is the state of the running
program at any one time; it changes constantly. Process context includes tf
following parts.

Scheduling context. The most important part of the process conte®
scheduling context—the information that the scheduler needs to-
and restart the process. This information includes saved copies
process’s registers. Floating-point registers are stored separat
restored only when needed, so that processes that do not use f
arithmetic do not incur the overhead of saving that state. 7

726

Chapter 21

context also includes information about scheduling priority and about any
outstanding signals waiting to be delivered to the process. A key part of the
scheduling context is the process’s kernel stack, a separate area of kernel
memory reserved for use exclusively by kernel-mode code. Both system
calls and interrupts that occur while the process is executing wilt use this
stack.

Accounting. The kernel maintains information about the resources cur-
rently being consumed by each process and the total resources consumed
by the process in its entire lifetime so far.

File table. The file table is an array of pointers to kernel file structures.
When making file-1/0 system calls, processes refer to files by their index
into this table.

File-system context. Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files. The current root
and default directories to be used for new file searches are stored here.

Signal-handler table. UNIX systems can deliver asynchronous signals to
a process in response to various external events. The signal-handier table
defines the routine in the process’s address space to be called when specific
signals arrive.

Virtual memory context. The virtual memory context describes the full
contents of a process’s private address space; we discuss it in Section 21.6.

21.4.2 Processes and Threads

Linux provides the fork(} system call with the traditional functionality of

icating a procesg. Linux also provides the ability to create threads using the
clone () system cail Howeverc;:i’;lux does not distinguish between processes
and threads\In fact/Linux generally uses the term task—rather than process or
thread—wh)n referring to a flow of control within a program. When clone ()
is invoked, it is passed a set of flags that determine how much sharing is to
take place between the parent and child tasks. Some of these flags are listed
below:

flag mesning 1
CLONE _FS File-system information is shared. |
CLONE_VM The same memory space is shared.
T ONE_STIGHAND Signal handlers are shared.
o “TLES The set of open files is shared.
i
: g
FES e
S d the flags CLONE FS, CLONE_VM, CLONE_SIGHAND,
s §AF 1t and child tasks will share the same file-system
" E:‘A‘ é:% F arrent working directory), the same memory space,
& ;5 and the same set of open files) Using clone (3 in this
T reating a thread in other systenhs, since the parent task

v -ces with its child task. However, if none of these fla JEENN

21.5

215 ooow 727

set when clone () is invoked, no sharing takes place, resulting in functionality
similar to the fork() system call.

o lack of distinction between processes and threads is possible because
Lintc-does not hold a process’s entire context within the main process data
struchiire; rather, it holds the context within independent subcontexts} Thus,
a process’s file-system context, file-descriptor table, signal-handler table, and
virtual memory context are held in separate data structures. The process data
structure simply contains pointers to these other structures, so any number of
processes can easily share a subcontext by pointing to the same subcontext as

applopriate.
éhe arguments to the clone () system call tell it which subcontexts to copy,
arkd which to share, when it creates a new process\The new process always is

" given a new identity and anew scheduling contextyaccording to the arguments

passed, however, it may either create new subcontext data structures initialized
to be copies of the parent’s or set up the new process to use the same subcontext
data structures being used by the parent.(Ihe fork() system call is nothing
more than a special case of clone () that copies all subcontexts, sharing norD

PRI

Scheduling is the job of allocating CPU time to different tasks within an
operating system. Normally, we think of scheduling as being the running and
interrupting of processes, but another aspect of scheduling is also important
to Linux: the running of the various kernel tasks. Kernel tasks encompass both
tasks that are requested by a running process and tasks that execute internally
on behalf of a device driver.

21.51 Process Scheduling

Linux has two separate process-scheduling algorithms. One is a time-sharing
algorithm for fair, preemptive scheduling among multiple processes; the other
is designed for real-time tasks, where absolute priorities are more important
than fairness.

The scheduling algorithm used for routine, time-sharing tasks received a
major overhaul with version 2.5 of the kernel. Prior to version 2.5, the Linux
kernel ran a variation of the traditional UNIX scheduling algorithm. Among
other issues, problems with the traditional UNIX scheduler are that it does
not provide adequate support for SMP systems and that it does not scale well
as the number of tasks on the system grows. The overhaul of the scheduler
with version 2.5 of the kernel now provides a scheduling algorithm that runs
in constant time-—known as O(1)—regardless of the number of tasks on the”
system. The new scheduler also provides increased support for sMP, including
processor affinity and load balancing, as well as maintaining fairness and
support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: real-time range from 0 to 99 and a nice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

7

728

Chapter 21

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
* tasks
99
100
° other
: tasks
140 lowest 10 ms

Figure 21.2 The relationship between priorities and time-slice length.

Unlike schedulers for many other systems, Linux assigns higher-priority
tasks longer time quanta and vice-versa. Because of the unique nature of the
scheduler, this is appropriate for Linux, as we shall soon see. The relationship
between priorities and time-slice length is shown in Figure 21.2.

A runnable task is considered eligible for execution on the CPU so long as
it has time remaining in its time slice. When a task has exhausted its time slice,
it is considered expired and is not eligible for execution again untii all other
tasks have also exhausted their time quanta. The kernel maintains a list of ali
runnable tasks in a runqueue data structure. Because of its support for SMP,
cach processor maintains its own runqueue and schedules itself independently.
Each runqueue contains two priority arrays-—active and expired. The active
array contains all tasks with time remaining in their time slices, and the expired
array contains all expired tasks. Each of these priority arrays includes a list of
tasks indexed according to priority (Figure 21.3). The scheduler chooses the
task with the highest priority from the active array for execution on the CPU.
On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When all tasks
have exhausted their time slices (that is, the active array is empty), the two
priority arrays are exchanged as the expired array becomes the active array
and vice-versa.

Tasks are assigned dynamic priorities that are based on the nice value plus
Or minus up. to the value 5 based upon the interactivity of the task. Whether

active expired
array array
priority task lists priority task lists
[0] o—0 [0] Oo—0—0
1 o—0—0 (1] 0!
* L] L] -
nao] o [140] 0—0

Figure 21.3 List of tasks indexed according to priority.

21.5 : . 729

a value is added to or subtracted from a task’s nice value depends on the
interactivity of the task. A task’s interactivity is determined by how long it has
been sleeping while waiting for 1/0. Tasks that are more interactive typically
have longer sleep times and therefore are more likely to have an adjustment
closer to -5, as the scheduler favors such interactive tasks. Conversely, tasks
with shorter sleep times are often more CPU-bound and thus will have their
priorities lowered.

The recalculation of a task’s dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasks in the new active array have been
assigned new priorities and corresponding time slices.

Linux's real-time scheduling is simpler still. Linux implements the two real-
time scheduling classes required by POSIX.1b: first-come, first-served (FCFS) and
round-robin {Sections 5.3.1 and 5.3.4, respectively). In both cases, each process
has a priority in addition to its scheduling class. Processes of different priorities
can compete with one another to some extent in time-sharing scheduling; in
real-time scheduling, however, the scheduler always runs the process with the
highest priority. Among processes of equal priority, it runs the process that
has been waiting longest. The only difference between FCFS and round-robin
scheduling is that FCFS processes continue to run until they either exit or
block, whereas a round-robin process will be preempted after a while and
will be moved to the end of the scheduling queue, so round-robin processes of
equal priority will automatically time-share among themselves. Unlike routine
time-sharing tasks, real-time tasks are assigned static priorities.

Linux’s real-time scheduling is soft—rather than hard—real time. The
scheduler offers strict guarantees about the relative priorities of real-time
processes, but the kernel does not offer any guarantees about how quickly
a real-time process will be scheduled once that process becomes runnable.

21.5.2 Kernel Synchronization

The way the kernel schedules its own operations is fundamentally different
from the way it schedules processes. A request for kernel-mode execution
can occur in two ways. A running program may request an operating-system
service, either explicitly via a system call or implicitly—for example, when
a page fault occurs. Alternatively, a device driver may deliver a hardware
interrupt that causes the CPU to start executing a kernel-defined handler for
that interrupt.

The problem posed to the kernel is that all these tasks may try to access the
same internal data structures. If one kernel task is in the middle of accessing
some data structure when an interrupt service routine executes, then that
service routine cannot access or modify the same data without risking data
corruption. This fact relates to the idea of critical sections—portions of code
that access shared data and that must not be allowed to execute concurrently.
As a result, kernel synchronization involves much more than just process
scheduling. A framework is required that allows kernel tasks to run without
violating the integrity of shared data.

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a
process running in kernel mode could not be preempted —even if a higher-
priority process became available to run. With version 2.6, the Linux kernel

730

Chapter 21

became fully preemptive; so a task can now be preempted when it is running
in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader—
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spintock; the kernel is designed so that
the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That s, on single-processor machines, rather than holding a
spinlock, the task disables kernel preemption. When the task would otherwise
release the spinlock, it enables kernel preemption. This pattern is summarized
below:

Single processor " | miltpte processors
Disable kernel preemption. Acquire spin lock,
Enable kernel preemption. Release spin lock. |

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt_disable() and pre-
empt_enable () —for disabling and enabling kernel preemption. However, in
addition, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this rule, each task in the system has a thread-info structure that
includes the field preempt_count, which is a counter indicating the number
of locks being held by the task. When a lock is acquired, preempt_count is
incremented. Likewise, it is decremented when a lock is released. If the value
of preempt_count for the task currently running is greater than zero, it is not
safe to preempt the kernel, as this task currently holds a lock. If the count is
zero, the kernel can safely be interrupted, assuming there are no outstanding
calls to preempt _disable().

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when the lock is held for short durations. When a lock
must be held for longer periods, semaphores are used.

The second protection technique that Linux uses applies to critical sections
that occur in interrupt service routines. The basic tool is the processor’s
interrupt-control hardware. By disabling interrupts (or using spinlocks) during
a critical section, the kernel guarantees that it can proceed without the risk of
concurrent access of shared data structures.

However, there is a penalty for disabling interrupts, On most hardware
architectures, interrupt enable and disable instructions are expensive. Further-
more, as long as interrupts remain disabled, all 1/0 is suspended, and any
device waiting for servicing will have to wait until interrupts are reenabled; so
performance degrades. The Linux kernel uses a synchronization architecture
that allows long critical sections to run for their entire duration without having
interrupts disabled. This ability is especially useful in the networking code: An
interrupt in a network device driver can signal the arrival of an entire network
packet, which may result in a great deal of code being executed to disassemble,
route, and forward that packet within the interrupt service routine.

Linux implements this architecture by separating interrupt service routines
into two sections: the top half and the bottom half. The top half is a normal

21.5 731

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible}

)
£
=
g
c
[=%
o
£
@
o
2
Q
=

user-mode programs (preemptible}

-

Figure 21.4 Interrupt protection levels.

interrupt service routine and runs with recursive interrupts disabled; interrupts
of a higher priority may interrupt the routine, but interrupts of the same
or lower priority are disabled. The bottom half of a service routine is run,
with all interrupts enabled, by a miniature scheduler that ensures that bottom
halves never interrupt themselves. The bottom-half scheduler is invoked
automatically whenever an interrupt service routine exits.

This separation means that the kernel can complete any complex processing
that has to be done in response to an interrupt without worrying about being
interrupted itself. If another interrupt occurs while a bottom half is executing,
then that interrupt can request that the same bottom half execute, but the
execution will be deferred until the one currently running completes. Each
execution of the bottom half can be interrupted by a top half but can never be
interrupted by a similar bottom haif.

The top-half/bottom-half architecture is completed by a mechanism for
disabling selected bottom halves while executing normal, foreground kernel
code. The kernel can code critical sections easily using this system. Interrupt
handlers can code their critical sections as bottom halves; and when the
foreground kernel wants to enter a critical section, it can disable any relevant
bottom halves to prevent any other critical sections from interrupting it. At
the end of the critical section, the kernel can reenable the bottom halves and
run any bottom-half tasks that have been queued by top-half interrupt service
routines during the critical section.

Figure 21.4 summarizes the various levels of interrupt protection within
the kernel. Each level may be interrupted by code running at a higher level
but will never be interrupted by code running at the same or a lower level;
except for user-mode code, user processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs.

21.5.3 Symmetric Multiprocessing

‘The Linux 2.0 kernel was the first stable Linux kernel to support symmetric
multiprocessor (SMP) hardware, allowing separate processes to execute in
parallel on separate processors. Originally, the implementation of SMT imposed
the restriction that only one processor at a time could be executing kernel-mode
code.

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed
BKL for “big kernel lock”} was created to allow multiple processes (running
on different processors) to be active in the kernel concurrently. However, the

732

21.6

Chapter 21

BKL provided a very coarse level of locking granularity. Later releases of the
kernel made the SMP implementation more scalable by splitting this single
kernel spinlock into multiple locks, each of which protects only a small subset
of the kernel’s data structures. Such spinlocks are described in Section 21.5.2.
The 2.6 kernel provided additional SMP enhancements, including processor
affinity and load-balancing algorithms.

Memory management under Linux has two components. The first deals with
allocating and freeing physical memory—pages, groups of pages, and small
blocks of memory. The second handles virtual memory, which is memory
mapped into the address space of running processes. In this section, we
describe these two components and then examine the mechanisms by which
the loadable components of a new program are brought into a process’s virtual
memory in response to an exec () system call.

21.6.1 Management of Physical Memory

Due to specific hardware characteristics, Linux separates physical memory into
three different zones identifying different regions of memory. The zones are
identified as:

ZONE_DMA
ZONE _NORMAL
ZONE_HIGHMEM

These zones are architecture specific. For example, on the Intel 80x86 archi-
tecture, certain ISA (industry standard architecture) devices can only access
the lower 16 MB of physical memory using DMA. On these systems, the
first 16 MB of physical memory comprise ZONE_DMA. ZONE_NORMAL identifies
physical memory that is mapped to the CPU's address space. This zone is
used for most routine memory requests. For architectures that do not limit
what DMA can access, ZONE_DMA is not present, and ZONE NORMAL is used.
Finally, ZONE_HIGHMEM (for “high memory™) refers to physical memory that is
not mapped nto the kernel address space. For example, on the 32-bit Intel
architecture (where 2* provides a 4-GB address space), the kernel is mapped
into the first 896 MB of the address space; the remaining memory is referred
to as high memory and is allocated from ZONE_HIGHMEM. The relationship of
zones and physical addresses on the Intel 80x86 architecture is shown in Figure
21.5. The kernel maintains a list of free pages for each zone. When a request for
physical memory arrives, the kernel satisfies the request using the appropriate
zone.

The primary physical-memory manager in the Linux kernel is the page
allocator. Each zone has its own allocator, which is responsible for allocating
and freeing all physical pages for the zone, and it is capable of aflocating
ranges of physically contiguous pages on request. The allocator uses a buddy
system (Section 9.8.1) to keep track of available physical pages. In this scheme,

21.6 o 733

zone _ ' B physical memory
ZONE_DMA <16 MB
ZONE_NORMAL 16 .. 896 MB o
ZONE_HIGHMEM > 896 MB

Figure 21.5 Relationship of zones and physical addresses on the Intel 80x86.

adjacent units of allocatable memory are paired together (hence its name). Each
allocatable memory region has an adjacent partner {or buddy). Whenever two
allocated partner regions are freed up, they are combined to form a larger
region—a buddy heap. That larger region also has a partner, with which it can
combine to form a still larger free region. Conversely, if a small memory request
cannot be satisfied by allocation of an existing small free region, then a larger
free region will be subdivided into two partners to satisfy the request. Separate
linked lists are used to record the free memory regions of each allowable size;
under Linux, the smallest size allocatable under this mechanism is a single
physical page. Figure 21.6 shows an example of buddy-heap allocation. A 4-KB
region is being allocated, but the smallest available region is 16 KB. The region
is broken up recursively until a piece of the desired size is available.

Ultimately, all memory allocations in the Linux kernel are made either
statically, by drivers that reserve a contiguous atea of memary during system
boot time, or dynamically, by the page allocator. However, kernel functions
do not have to use the basic allocator to reserve memorv. Several specialized
memory-management subsystems use the underlying page allocator to man-
age their own pootls of memory. The most important are the virtual memory
system, described in Section 21.6.2; the kmalloc (} variable-length allocator;
the slab allocator, used for allocating memory for kernel data structures; and
the page cache, used for caching pages belonging to files.

Many components of the Linux operating system need to allocate entire
pages on request, but often smaller blocks of memory are required. The kernel
provides an additional allocator for arbitrary-sized requests, where the size
of a request is not known in advance and may be only a few bytes, rather

8KB BKB
16KB .
4KB
8KB _ _
i
4KB f
|

Figure 21.6 Splitting of memory in the buddy system.

734

Chapter 21

than an entire page. Analogous to the C language’s malloc() function, this
kmalloc() service allocates entire pages on demand but then splits them
into smaller pieces. The kernel maintains a set of lists of pages in use by the
kmalloc () service. Allocating memory involves working out the appropriate
list and either taking the first free piece available on the list or allocating a new
page and splitting it up. Memory regions claimed by the kmalloc{() system
are allocated permanently until they are freed explicitly; the kmalleoc () system
cannot relocate or reclaim these regions in response to memory shortages.

Another strategy 1dopted by Linux for allocating kernel memory is known
as slab allocation. A slab is used for allocating memory for kernel data
structures and is made up of one or more physically contiguous pages. A
cache consists of one or more slabs and there is a single cache for each unique
kernel data structure —for example, a cache for the data structure representing
process descriptors, a cache for file objects, a cache for semaphores, and
so forth. Each cache is populated with objects that are instantiations of the
kernel data stru<ture the cache represents. For example, the cache representing
semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, etc. The
relationship among slabs, caches, and objects is shown in Figure 21.7. The
figure shows two kernel objects 3 KB in size and three objects 7 KB in size.
These objects are stored in the respective caches for 3-KB and 7-KB objects.

The slab-allocation algorithm uses caches to store kernel objects. When a
cache is created, a number of objects—which are initially marked as free—are
allocated to the cache. The number of objects in the cache depends on the size of
the associated slab. For example, a 12-KB slab {comprised of three continguous
4-KB pages) could store six 2-KB objects. Initially, all objects in the cache are
marked as free. When a new object for a kernel data structure is needed, the
allocator can assign any free object from the cache to satisfy the request. The
object assigned from the cache is marked as used.

kernel objects caches slabs
3-KB " T~
objects]
S physically
B e = contiguous
-7 pages
[
| === B St
objects] 1
e -

Figure 21.7 Slab allocator in Linux.

21.6 735

Let’s consider a scenario in which the kernel requests memory from the
slab allocator for an object representing a process descriptor. In Linux systems,
a process descriptor is of the type struct task.struct, which requires
approximately 1.7 KB of memory. When the Linux kernel creates a new task,
it requests the necessary memory for the struct task.struct object from its
cache. The cache will fulfill the request using a struct task struct object
that has already been allocated in a slab and is marked as free.

In Linux, a slab may be in one of three possible states:

Full. All objects in the slab are marked as used.
Empty. All objects in the slab are marked as free.

Partial. The slab consists of both used and free objects.

The slab allocator first attempts to satisfy the request with a free object in a
partial slab. If none exist, a free object is assigned from an empty slab. If no
empty slabs are available, a new slab is allocated from contiguous physical
pages and assigned to a cache; memory for the object is allocated from this
slab.

The other two main subsystems in Linux that do their own management
of physical pages are closely related to one another. These are the page cache
and the virtual memory system. The page cache is the kernel’s main cache for
block-oriented devices and memory-mapped files and is the main mechanism
through which 1/0 to these devices is performed. Both the native Linux disk-
based file systems and the NFS networked file system use the page cache.
The page cache caches entire pages of file contents and 1s not limited to block
devices; it can also cache networked data. The virtual memory system manages
the contents of each process’s virtual address space. These two sysiems interact
closely with one another because reading a page of data into the page cache
requires mapping pages in the page cache using the virtual memory system. In
the following sections,'we look at the virtual memory system in greater detail.

21.6.2 Virtual Memory

The Linux virtual memory system is responsible for maintaining the address
space visible to each process. It creates pages of virtual memory on demand
and manages the loading of those pages from disk or their swapping back out
to disk as required. Under Linux, the virtual memory manager maintains two
separate views of a process’s address space: as a set of separate regions and as
a sef of pages.

The first view of an address space is the logical view, describing instructions
that the virtual memory systemn has received concerning the layout of the
address space. In this view, the address space consists of a set of nonoverlapping
regions, each region representing a continuous, page-aligned subset of the
address space. Each region is described internally by a single vm_area_struct
structure that defines the properties of the region, including the process’s read,
write, and execute permissions in the region, and information about any files
associated with the region. The regions for each address space are linked into
a balanced binary tree to allow fast lookup of the region corresponding to any
virtual address,

736

Chapter 21

The kernel also maintains a second, physical view of each address space.
This view is stored in the hardware page tables for the process. The page-table
entries determine the exact current location of each page of virtual memory,
whether it is on disk or in physical memory. The physical view is managed
by a set of routines invoked from the kernel’s software-interrupt handlers
whenever a process tries to access a page that is not currently present in the page
tables. Each vm_area_struct in the address-space description contains a field
that points to a table of functions that implement the key page-management
functions for any given virtual memory region. All requests to read or write
an unavailable page are eventually dispatched to the appropriate handler
in the function table for the vm_area.struct, so that the central memory-
management routines do not have to know the details of managing each
possible type of memory region.

21.6.2.1 Virtual Memory Regions

Linux implements several types ot virtual memory regions. The first property
that charactcrizes a type of virtual memory is the backing store for the region,
which describes where the pages for a region come from. Most memory regions
are backed either by a file or by nothing. A region backed by nothing is
the simplest type of virtual memory. Such a region represents demand-zero
memory: When a process tries to read a page in such a region, it is simply given
back a page of memory filled with zeros.

A region backed by a file acts as a viewport onio a section of that file:
Whenever the process tries to access a page within that region, the page table
is filled with the address of a page within the kernel's page cache corresponding
to the appropriate offset in the file. The same page of physical memory is used
both by the page cache and by the process’s page tables, s any changes made
to the file by the file system are immediately visible to any processes that have
mapped that file into their address space. Any number of processes can map
the same region of the same file, and they will all end up using the same page
of physical memory tor the purpose.

A virtual memory region is also defined by its reaction to writes. The
mapping of a region into the process’s address space can be either private or
shared. If a process writes to a privately mapped region, then the pager detects
that a copy-on-write is necessary to keep the changes local to the process. In
contrast, writes to a shared region result in updating of the object mapped into
that region, so that the change will be visible immediately to any other process
that is mapping that object.

21.6.2.2 Lifetime of a Virtual Address Space

The kernel will ¢reate a new virtual address space in two situations: when a
process runs a new program with the exec() system call and on creation of
a new process by the fork{) system call. The first case is easy: When a new
program is executed, the process is given a new, completely empty virtual
address space. It is up to the routines for loading the program to populate the
address space with virtual memory regions.

The second case, creating a new process with fork(), involves creating
a complete copy of the existing process’s virtual address space. The kernel
copies the parent process’s vib_area_struct descriptors, then creates a new set

216 737

of page tables for the child. The parent’s page tables are copied directly into
the child’s, and the reference count of each page covered is incremented; thus,
after the fork, the parent and child share the same physical pages of memory
in their address spaces.

A special case occurs when the copying operation reaches a virtual memory
region that is mapped privately. Any pages to which the parent process has
written withinsuch a region are private, and subsequent changes to these pages
by either the parent or the child must not update the page in the other process’s
address space. When the page-table entries for such regions are copied, they
are set to be read only and are marked for copy-on-write. As long as neither
process modifies these pages, the bwo processes share the same page of physical
memory. However, if either process tries to modify a copy-on-write page, the
reference count on the page is checked. If the page is still shared, then the
process copies the page’s contents to a brand-new page of physical memory
and uses its copy instead. This mechanism cnsures that private data pages
are shared between processes whenever possible; copies are made only when
absolutely necessary.

21.6.2.3 Swapping and Paging

An important task for a virtual memory system is to relocate pages of memory
from physical memory out to disk when that memory is needed. Early UNIX
systems performed this relocation by swapping out the contents of entire
processes at once, but modern versions of UNIX rely more on paging-—the
movement of individual pages of virtual memory between physical memory
and disk. Linux does not implement whole-process swapping; it uses the newer
paging mechanism exclusively.

The paging system can be divided into two sections. First, the policy
algorithm decides which pages to write out to disk and when to write them.
Second, the paging mechanism carries out the transfer and pages data back
into physical memory when they are needed again.

Linux’s pageout policy uses a modified version of the standard clock {or
second-chance) algorithm described in Section 9.4.5.2. Under Linux, a multiple-
pass clock is used, and every page has an age that is adjusted on each pass of
the clock. The age is more precisely a measure of the page’s youthfulness, or
how much activity the page has seen recently. Frequently accessed pages will
attain a higher age value, but the age of infrequently accessed pages will drop
toward zero with each pass. This age valuing allows the pager to select pages
to page out based on a least frequently used {LFU} policy.

The paging mechanism supports paging both to dedicated swap devices
and partitions and to normal files, although swapping to a file is significantly
slower due to the extra overhead incurred by the file system. Blocks are
allocated from the swap devices according to a bitmap of used blocks, which
is maintained in physical memory at all times. The allocator uses a next-fit
algorithm to try to write out pages to continuous runs of disk blocks for
improved performance. The allocator records the fact that a page has been
paged out to disk by using a feature of the page tables on modern processors:
The page-table entry’s page-not-present bit is set, allowing the rest of the
page-table entry to be filled with an index identifying where the page has been
written.

738

Chapter 21

21.6.2.4 I(ernél Virtual Memory

Linux reserves for its own internal use a constant, architecture-dependent
region of the virtual address space of every process. The page-table entries
that map to these kernel pages are marked as protected, so that the pages are
not visible or modifiable when the processor is running in user mode. This
kernel virtual memory area contains two regions. The first is a static area that
contains page-table references to every available physical page of memory
in the system, so that a simple translation from physical to virtual addresses
occurs when kernel code is run, The core of the kernel, along with all pages
allocated by the normal page allocator, resides in this region.

The remainder of the kernel's reserved section of address space is not
reserved for any specific purpose. Page-table entries in this address range
can be modified by the kernel to point to any other areas of memory. The
kernel provides a pair of facilities that allow processes to use this virtual
memory. The vmallec() function allocates an arbitrary number of physical
pages of memory that may not be physically contiguous into a single region of
virtually contiguous kernel memeory. The vremap () function maps a sequence
of virtual addresses to point to an area of memory used by a device driver for
memory-mapped [/0.

21.6.3 Execution and L.ocading of User Programs

The Linux kernel’s execution of user programs is triggered by a call to the
exec () system call. This call commands the kernel to runa new program within
the current process, completely overwriting the current execution context with
the initial context of the new program. The first job of this system service is to
verify that the calling process has permission rights to the file being executed.
Once that matter has been checked, the kernel invokes a loader routine to start
running the program. The loader does not necessarily load the contents of the
program file into physical mernory, but it does at least set up the mapping of
the program into virtual memory.

There is no single routine in Linux for loading a new program. Instead,
Linux maintains a table of possible loader functions, and it gives each such
function the opportunity to try loading the given file when an exec () system
call is made. The initial reason for this loader table was that, between the
rel .ases of the 1.0 and 1.2 kernels, the standard format for Linux’s binary files
wa, changed. Older Linux kernels understood the a.out format for binary
files—a relatively simple format common on older UNIX systems. Newer
Linux systems use the more modern ELF format, now supported by most
current UNIX implementations. ELF has a number of advantages over a. out,
including flexibility and extensibility: New sections can be added to an ELF
binary (for example, to add extra debugging information) without causing
the leader routines to become confused. By allowing registration of multiple
loader routines, Linux can easily support the ELF and a. out binary formats in
a single running system.

In Sections 21.6.3.1 and 21.6.3.2, we concentrate exclusively on the loading
and running of ELF-format binaries. The procedure for loading a. out binaries
is simpler but is similar in operation.

21.6 739

21.6.3.1 Mapping of Programs into Memory

Under Linux, the binary loader dees not load a binary file into physical memory.
Rather, the pages of the binary file are mapped into regions of virtual memory.
Only when the program tries to access a given page will a page fault resultin
the loading of that page into physical memory using demand paging.

Tt is the responsibility of the kernel’s binary loader to set up the initial
memory mapping. An ELF-format binary file consists of a header followed by
several page-aligned sections. The ELF loader works by reading the header and
mapping the sections of the file into separate regions of virtual memory.

Figure 21.8 shows the typical layout of memory regions set up by the £LF
loader. In a reserved region at one end of the address space sits the kernel, in
its own privileged region of virtual memory inaccessible to normal user-mode
programs. The rest of virtual tnemory is available to applications, which can use
the kernel’s memory-mapping functions to create regions that map a portion
of a file or that are available for application data.

The lnader’s job is to set up the initial memory mapping to allow the
execution of the program to start. The regions that need to be initialized include
the stack and the program’s text and data regions.

The stack is created at the top of the user-mode virtual memory; it
grows downward toward lower-numbered addresses. It includes copies of the
arguments and environment variables given to the program in the exec()
system call. The other regions are created near the bottom end of virtual
memory. The sections of the binary file that contain program text or read-only
data are mapped into memory as a write-protected region. Writable initialized
data are mapped next; then any uninitialized data are mapped in as a private
demand-zero region.

kernet virtual memory I memory invisible to user-mode code

stack .

}
!

memory-maprred region

memory-mapped region

memory-mapped region

4 the *brk’ pointer
run-time data
uninitialized dafa
initialized data
program text

farhidden region

Figure 21.8 Memory layout for ELF programs.

740 Chapter 21

Directly beyond these fixed-sized regions is a variable-sized region that
programs <an oxpand as needed to hold data allocated at run time. Each
process has a pointer, brk, that points to the current extent of this data region,
and processes can extend or contract their brk region with a single system call
—sbrk().

Once these mappings have been set up, the loader initializes the process’s
program-counter register with the starting point recorded in the ELF header,
and the process can be scheduled.

21.6.3.2 Static and Dynamic Linking

Once the program has been loaded and has started running, all the necessary
contents of the binary file have been loaded into the process’s virtual address
space. However, most programs also need to run functions from the system
libraries, and these library functions also need to be loaded. In the simplest
case, the necessary library functions are embedded directly in the program’s
executable binary file. Such a program is statically linked to its libraries, and
statically linked executable codes can commence running as soon as they are
lvaded.

The main disadvantage of static linking is that every program generated
must contain copies of exactly the same common system library functions. lt is
much more efficient, in terms of both physical memory and disk-space usage,
to load the system libraries into memory only once. Dynamic linking allows
this single loading to happen.

Linux implements dynamic linking in user mode through a special linker
library. Every dynamically linked program contains a small, statically linked
function that is called when the program starts. This static function just maps
the link library into memory and runs the code that the function contains. The
link library determines the dynamic libraries required by the program and the
names of the variables and functions needed from those libraries by reading the
information contained i sections of the ELF binary. It then maps the libraries
into the middle of virtual memory and resolves the references to the symbols
contained in those librarics. It does not matter exactly where in memory these
shared libraries are mapped: They are compiled into position-independent
cade (PIC), which can run at any address in memory. ‘

21.7

@ux retains UNIX's standard file-system model. In UNIX, a file does not have

0 be an object stored on diskYpr fetched over a network from a remote file
server. Rather, UNIX files can J¢ anything capable of handling the input or
output of a stream of data. Device drivers can appear as files, and interprocess-
communication channels or network connections also look like files to the
user.

The Linux kernel handles all these types of file by hidi.ig the implemen-
tation details of any single file type behind a layer of software, the virtual file
system (VFS). Here, we first cover the virtual file system and then discuss the
standard Linux file system—ext2fs.

21.7 741

21.7.1 The Virtual File System

The~Hifitx VFS is designed around object-oriented principles. It has two
components: a set of definitions that specify what file-system objects are
allowed to look like and a layer of software to manipulate the objects. The
VFS defines four main object types:

An inode object represents an individual file.

A file object represents an open file.

A superblock object represents an entire file system.

A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations.
Every object of one of these types contains a pointer to a function table. The
function table lists the addresses of the actual functions that implement the

defined operations for that object. For exaimnple, an abbreviated API for some of
the file object’s operations includes:

' int open(. . .) — Openafile.
ssize t read(. . .) — Read from a file.
ssize t write(. . .) — Writetoa file,
int mmap(. . .) — Memory-map a file.

The complete definition of the file object is specified in the struct
file_operations, which is located in the file /usr/include/linux/fs.h.
An implementation of the file object (for a specific file type) is required to
implement each function specified in the definition of the file object.

The VES software layer can perform an operation on one of the file-system
objects by calling the appropriate function from the object’s function table,
without having to know in advance exactly what kind cf object it is dealing
with. The VES does not know, or care, whether an inode represents a networked
file, a disk file, a network socket, or a directory file. The appropriate function
for that file’s read () operation will always be at the same place in its function
table, and the VFS software Jayer will call that function without caring how the
data are actually read. :

The inode and file objects are the mechanisms used to access files. Aninode
object is a data structure containing pointers to the disk blocks that contain the
actual file contents, and a file object represents a point of access to the datainan
open file. A process cannot access an inode’s contents without first obtaining a
file object pointing to the inode. The file object keeps track of where in the file
the process is currently reading or writing, to keep track of sequential file 1/0. 1t
also remembers whether the process asked for write permissions when the file
was opened and tracks the process’s activity if necessary to perform adaptive
read-ahead, fetching file data into memory before the process requests the data,
to improve performance. ®

File objects typically belong to a single process, but inode objects do not.
Even when a file is no longer being used by any processes, its inode object

742

Chapter 21

may still be cached by the VIS to improve performance if the file is used again
in the near future. All cached file data are linked onto a list in the file’s inode
object. The inode also maintains standard information about each file, such as
the owner, size, and time most recently modified.

Directory files are dealt with slightly differently from other files. The UNIX
programming interface defines a number of operations on directories, stch as
creating, deleting, and renaming a file in a directory. The system calls for these
directory operations do not require that the user open the files concerned,
unlike the case for reading or writing data. The VFS therefore defines these
directory operations in the inode object, rather than in the file object.

The superblock object represents a connected set of files that form a
self-contained file system. The operating-system kernel maintains a single
superblock object for each disk device mounted as a file system and for
each networked file system currently connected. The main responsibility of
the superblock object is to provide access to inodes. The VFS identifies every
inode by a unique (file-system/inode number) pair, and it finds the inode
corresponding to a particular inode number by asking the superblock object to
return the inode with that number.

Finally, a dentry object represents a directory entry that may include the
name of a directory in the path name of a file (such as /usr) or the actual file
(such as stdic.h). For example, the file /usr/include/stdio.h contains the
directory entries (1) /, (2} usr, (3} include, and {(4) stdio.h. Each one of these
values is represented by a separz.te dentry object.

As an example of how dentry objects are used, consider the situ-
ation in which a process wisnes to open the file with the pathname
/usr/include/stdio.husing ai. editor. Because Linux treats directory names
as files, translating this path requires first obtaining the inode for the root—
/. The operating system must then read through this file to obtain the inode
for the file include. It must continue this process until it obtains the inode for
the tile stdio. h. Because path-name translation can be a time-consuming task,
Linux maintains a cache of dentry objects, which is consulted during path-name
translation. Obtaining the inode from the dentry cache is considerably faster
than having to read the on-disk file.

21.7.2 The Linux ext2fs File System

Q;:?)dard on-disk file system used by Linux is called ext2fs, for historical
ns. Linux was originally programmed with a Minix-compatible file
system, to ease exchanging data with the Minix development system, but
that file system was severely restricted by 14-character file-name limits and a
maximurm file-system size of 64 MB. The Minix file system was superseded by
a new file system, which was christened the extended file system (extfs). A
later redesign of this file system to improve performance and scalability and
to add a few missing features led to the second extended file system (ext2fs).

Linuxs ext2fs has much in common with the BSD Fast File System (FFS)
(Section A.7.7). It uses a similar mechanism for locating the data blocks
belonging to a specific file, storing data-block pointers in indirect blocks
thréughout the file system with up to three levels of indirection. As in FFS,
directory files are stored on disk just like normal files, although their contents
are interpreted differently. Each block in a directory file consists of a linked list

21.7 S 743

of entries; each entry contains the length of the entry, the name of a file, and
the inode number of the inode to which that entry refers.

The main differences between ext2fs and FFS lie in their disk-allocation
policies. In FFS, the disk is allocated to files in bloeks of 8 KB. These blocks are
subdivided into fragments of 1 KB for storage of small files or partially filled
blocks at the ends of files. In contrast, ext2fs does not use fragments at all but
performs all its allocations in smaller units. The default biock size on ext2fs is
1 KB, although 2-KB and 4-KB blocks are also supported.

To maintain high performance, the operating system must try to perform
1/0 operations in large chunks whenever possible by clustering physically
adjacent 170 requests. Clustering reduces the per-request overhead incurred
by device drivers, disks, and disk-contreller hardware. A 1-KB 1/0 request size
is too small to maintain good performance, so ext2fs uses allocation policies
designed to place logically adjacent blocks of a file into physically adjacent
blocks on disk, so that it can submit an 170 request for several disk blocks as a
single operation.

The ext2fs allocation policy comes in two parts. As in FFS, an ext2fs file
system is partitioned into multiple block groups. FFS uses the similar concept
of cylinder groups, where each group corresponds to a single cylinder of a
physical disk. However, modern disk-drive technology packs sectors onto the
disk at diffi}nt densities, and thus with different cylinder sizes, depending
on how far.the disk head is from the center of the disk. Therefore, fixed-sized
cylinder groups de not necessarily correspond to the disk’s geometry.

When allocating a file, ext2fs must first select the block group for that file.
For data blocks, it attempts to allocate the file to the block group to which the
file’s inode has been allocated. For inode allocations, it selects the block group
in which the file’s parent directory resides, for nondirectory files. Directory
files are not kept together but rather are dispersed throughout the available
block groups. These policies are designed not only to keep related information
within the same block group but also to spread out the disk load among the
disk’s block groups to reduce the fragmentation of any one area of the disk.

Within a block group, ext2fs tries to keep allocations physically contiguous
if possible, reducing fragmentation if it can. It maintains a bitmap of all free
blocks in a block group. When allocating the first blocks for a new file, it
starts searching for a free block from the beginning of the block group; when
extending a file, it continues the search from the block most recently allocated
to the file. The search is performed in two stages. First, ext2fs searches for an
entire free byte in the bitmap; if it fails to find one, it looks for any free bit.
The search for free bytes aims to allocate disk space in chunks of at least eight
blocks whete possible.

Once a free block has been identified, the search is extended backward until
an allocated block is encountered. When a free bryte is found in the bitmap, this
backward extension prevents ext2fs from leaving a hole between the most
recently allocated block in the previous nonzero byte and the zero byte found.
Once the next block to be allocated has been found by either bit or byte search,
ext?fs extends the allocation forward for up to eight blocks and preallocates
these extra blocks to the file. This preallocation helps to reduce fragmentation
during interleaved writes to separate files and also reduces the CPU cost of
disk allocation by allocating multiple blocks simultaneously. The preallocated
blocks are returned to the free-space bitmap when the file is closed.

744

Chapter 21

allocating scattered free blocks

i
L AN AANM S
allocating continuous free blocks
| i | {
lij* |

(block selected
block in use L ! by aliocator

bit boundary

[free block —— bitmap search byte boundary

Figure 21,9 ext2fs block-allocation policies.

Figure 21.9 illustrates the allocation policies. Each row represents a
sequence of set and unset bits in an allocation bitmap, indicating used and
free blocks on disk. In the first case, if we can find any free blocks sufficiently
near the start of the search, then we allocate them no matter how fragmented
they may be. The fragmentation is partially compensated for by the fact that
the blocks are close together and can probably all be read without any disk
seeks, and allocating them all to one file is better in the long run than allocating
isolated blocks to separate files once large free areas become scarce on disk. In
the second case, we have not immediately found a free block close by, so we
search forward for an entire free byte in the bitmap. If we allocated that byte as
a whole, we would end up creating a fragmented area of free space before it, so
betore allocating we back up to make this allocation flush with the allocation
preceding it, and then we allocate forward to satisfy the default allocation of
eight blocks.

21.7.3 Journaling

Many different types of file systems are available for Linux systems. One
popular feature in a file system is journaling, whereby modifications to the file
system are sequentially written to a journal. A set of operations that performs
a specific task is a transaction. Once a transaction is written to the journal, it
is considered to be committed, and the system call modifying the file system
(i.e.write ()} can return to the user process, allowing it to continue execution.
Meanwhile, the journal entries relating to the transaction are replayed across
the actual file-system structures. As the changes are made, a pointer is updated
to indicate which actions have completed and which are still incomplete.
When an entire committed transaction is completed, it is removed from the
journal. The journal, which is actually a circular buffer, may be in a separate

21.7 (R 745

section of the file system, or it may even be on a separate disk spindle. It is
more efficient, but more complex, to have it under separate read —write heads,
thereby decreasing head contention and seek times.

If the system crashes, there will be zero or more transactions in the journal.
Those transactions were never completed to the file system even though they
were committed by the operating system, so they must be completed. The
transactions can be executed from the pointer until the work is complcte, and
the file-system structures remain consistent. The only problem occurs when a
transaction has been aborted. That is, it was not committed before the system
crashed. Any changes from those transactions that were applied to the file
system must be undone, again preserving the consistency of the file system.
This recovery is all that is needed after a crash, eliminating all problems with
consistency checking,.

Journaling file systems are also typically faster than non-journaling sys-
tems, as updates proceed much faster when they are applied to the in-memory
journal rather than directly to the on-disk data structures. The reason for this
improvement is found in the performance advantage of sequential i/O over
random I/0. The costly synchronous random writes to the file system are
turned into much less costly synchronous sequential writes to the file system’s
journal. Those changes in turn are replayed asynchronously via random writes
to the appropriate structures. The overall result is a significant gain in perfor-
mance of file system metadata-oriented operations, such as file creation and
deletion.

Journaling is not provided in ext2fs. 1t is provided, however, in another
common file system available for Linux systems, ext3, which is based on ext2fs.

21.7.4 The Linux proc File System

The flexibility of the Linux VFS enables us to implement a file system that does
not store data persistently at all but rather simply provides an interface to
some other functionality. The Linux process file system, known as the /proc
file system, is an example of a file system whaose contents are not actually stored
anywhere but are computed on demand according to user fite 1/0 requests.

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc
file system as an efficient interface to the kernel’s process debugging support:
Each subdirectory of the file system corresponded not to a directory on any
disk but rather to an active process on the current system. A listing of the file
system reveals one directory per process, with the directory name being the
ASCII decimal representation of the process’s unique process identitier (iD).

Linux implements such a /proc file system but extends it greatly by
adding a number of extra directories and text files under the file system’s root
directory. These new entries correspond to various statistics about the kernel
and the associated loaded drivers. The /proc file system provides a way for
programs o access this information as plain text files, which the standard
UNIX user environment provides powerful tools to process. For example, in
the past, the traditional UNIX ps command for listing the states of all running
processes has been implemented as a privileged process that reads the process
state directly from the kernel’s virtual memory. Under Linux, this command
is implemented as an entirely unprivileged program that simply parses and
formats the information from /proc.

746

21.8

Chapter 21

The /proc file system must implement two things: a directory structure
and the file contents within. Given that a UNIX file system is defined as a set
of file and directory inodes identified by their inode numbers, the /proc fite
system must define a unique and persistent inode number for each directory
and the associated files. Once such a mapping exists, it can use this inode
number to identify just what operation is required when a user tries to read
from a particular file inode or to perform a lookup in a particular directory
inode. When data are read from one of these files, the /proc file system will
collect the appropriate information, format it into textual form, and place it
into the requesting process’s read buffer.

The mapping from inode number to information type splits the inode.
number into two fields. In Linux, a PID is 16 bits wide, but an inode number is
32 bits. The top 16 bits of the inode number are interpreted as a PID, and the
remaining bits define what type of information is being requested about that
process.

A PID of zero is not valid, so a zero PID field in the inode number is
taken to mean that this inode contains global—rather than process-specific—
information. Separate global files exist in /proc to report information such as
the kernel version, free memory, performance statistics, and drivers currently
running.

Notall the inode numbers in this range are reserved. The kernel can allocate
new /proc inode mappings dynamically, maintaining a bitmap of allocated
inode numbers. [t also maintains a tree data structure of registered global /proc
file-system entries. Each entry contains the file’s inode number, file name, and
access permissions, along with the special functions used to generate the file’s
contents. Drivers can register and deregister entries in this tree at any time,
and a special section of the tree—appearing under the fprac/sys directory—
is reserved for kernel variables. Files under this tree are dealt wit- by a set
of commeon handlers that allow both reading and writing of these variables,
S0 a system administrator can tune the value of kernel parameters simply by
writing the new desired values out in ASC1I decimal to the appropriate file.

To allow efticient access to these variables from within applications, the
/proc/sys subtree is made available through a special system call, sysctl(),
that reads and writes the same variables in binary, rather than in text, without
the overhead of the file system. sysct1 () is not an extra facility; it simply reads
the /proc dynamic entry tree to decide to which variables the application is
referring. :

To the user, the 1/0 system in Linux looks much like that in any UNIX system.
That is, to the extent possible, all device drivers appear as normal files. A
user can open an access channel to a device in the same way she opens any
other file—devices can appear as objects within the file system. The system
administrator can create special files within a file system that contain references
to a specific device driver, and a user opening such a file will be able to read
from and write to the device referenced. By using the normal file-protection
system, which determines who can access which file, the administrator can set
access permissions for each device.

21.8 747

user application

T
t
file system ! d b!ocl-}‘l character network
| Gevicele | device file socket
juytinfaiatuinis HU ST
/0 scheduler ' TY driver line I protecol
_______ S — ;" discipline 1+ driver
_________________ .|
block | SCSImanager | L---n oIS e T e e
device | oo T character] network
driver l SCS| device device § device :
! driver driver ; driver]

Figure 21.10 Device-driver block structure,

Linux splits all devices into three classes: block devices, character devices,
and network devices. Figure 21.10 illustrates the overall structure of the
device-driver system.

Block devices include all devices that allow random access to completely
independent, fixed-sized blocks of data, including hard disks and floppy disks,
CD-ROMs, and flash memory. Block devices are typically used to store file
systems, but direct access to a block device is alse allowed so that programs
can create and repair the file system that the device contains. Applications can
also access these block devices directly if they wish; for example, a database
application may prefer to perform its own, fine-tuned laying out of data onto
the disk, rather than using the general-purpose file system.

Character devices include most other devices, such as mice and keyboards.
The fundamental difference between block and character devices is random
access—Dblock devices may be accessed randomly, while character devices are
only accessed serially. For example, seeking to a certain position in a file might
be supported for a DVD but makes no senge to a pointing device such as a
mouse,

Network devices are dealt with differently from block and character
devices. Users cannot directly transfer data to network devices; instead,
they-must communicate indirectly by opening a connection to the kernel’s
networking subsystem. We discuss the interface to network devices separately
in Section 21.10.

21.8.1 Bilock Devices

Block devices provide the main interface to all disk devices in a system.
Performance is particularly important for disks, and the block-device system
must provide functionality to ensure that disk access is as fast as possible. This
functionality is achieved through the scheduling of 1/0 operations.

In the context of block devices, a block represents the unit with which the
kernel performs 1/0. When a block is read intp memory, it is stored in a buffer.
The request manager is the layer of software that manages the reading and
writing of buffer contents to and from a block-device driver.

A separate list of requestsis kept for each block-device driver. Traditionally,
these requests have been scheduled according to a unidirectional-elevator

748

Chapter 21

(C-SCAN) algorithm that exploits the order in which requests are inserted in
and temoved from the per-device lists. The request lists are maintained in
sorted order of increasing starting-sector number. When a request is accepted
for processing by a block-device driver, it is not removed from the list. It is
removed only after the i/0 is complete, at which point the driver continues
with the next request in the list, even if new requests have been inserted into
the list before the active request. As new 1/Q requests are made, the request
manager attempts to merge requests in the per-device lists.

The scheduling of 1/0 operations changed somewhat with version 2.6 of
the kernel. The fundamental problem with the elevator algorithm is that 1/0
operations concentrated in a specific region of the disk can result in starvation
of requests that need to occur in other regions of the disk. The deadline
I/O scheduler used in version 2.6 works similarly to the elevator algorithm
except that it also associates a deadline with each request, thus addressing
the starvation issue. By default, the deadline for read requests is (1.5 second
and that for write requests is 5 seconds. The deadline scheduler maintains a
sorted queue of pending 1/0 operations sorted by sector number. However,
it also maintains two other queues—a read queue for read operations and a
write queue for write operations. These two queues are ordered according to
deadline. Every 1/0 request is placed in both the sorted queue and either the
read or the write queue, as appropriate. Ordinarily, I/0 operations accur from
the sorted queue. However, if a deadline expires for a request irreither the read
or the write queue, I/0 operations are scheduled from the queue containing the
expired request. This policy ensures that an 1/0 operation will wait no longer
than its expiration time.

21.8.2 Character Devices

A character-device driver can be almost any device driver that does not offer
random access to fixed blocks of data. Any character-device drivers registered
to the Linux kernel must also register a set of functions that implement the
file 1/0 operations that the driver can handle. The kernel performs almost no
preprocessing of a file read or write request to a character device; it simply
passes the request to the device in question and lets the device deal with the
request,

The main exception to this rule is the special subset of character-device
drivers that implement terminal devices. The kernel maintains a standard
interface to these drivers by means of a set of tty_struct structures. Each of
these structures provides buffering and flow control on the data stream from
the terminal device and feeds those data to a line discipline.

A line discipline is an interpreter for the information from the terminal
device. The most common line discipline is the tty discipline, which glues the
terminal’s data stream onto the standard input and output streams of a user’s
running processes, allowing those processes to communicate directly with the
user’s terminal. This job is complicated by the fact that several such processes
may be running simultaneously, and the tty line discipline is responsible for
attaching and detaching the terminal’s input and output from the various
processes connected to it as those processes are suspended or awakened by the
USEr.

21.9

21.9 : 749

Other line disciplines also are implemented that have nothing to do with
170 to a user process. The PPP and SLIP networking protocols are wavs of
encoding a networking connection over a terminal device such as a serial
line. These protocols are implemented under Linux as drivers that at one end
appear to the terminal system as line disciplines and at the other end appear
to the networking svstem as network-device drivers. After one of these line
disciplines has been enabled on a terminal device, any data appearing on that
terminal will be routed directly to the appropriate network-device driver.

UNIX provides a rich environment for processes to communicate with each
other. Communication may be just a matter of letting another process know
that some event has occurred, or it may involve transferring data from one
process to ancther.

21.9.1 Synchronization and Signals

@w standard UNIX_mechanism for informing a process that an event has

curred is the signa?ignals can be sent from any process to any other process,
with restrictions on sighals sent to processes owned by another useﬁi owever,
a limited number of signals are available, and they cannot carry ipformation:
Only the fact that a signal occurred is available to a process. Signals arc not
generated only by processey’ The kernel also generates signals internally; for
example, it can send a signal te-a server process when data arrive on a network
channel, to a parent process when a child terminatesor to a waiting process
whgn a timer expires.

Internally, the Linux kernel does not use signal® to communicate with
précesses running in kernel modeyIf a kernel-mode process is expecting an
event to occur, it will not normally use signals to receive notification of that
event, Rather, communication about incoming asynchronous events within
the kernel is performed through the use of scheduling states and wait.queue
structures. These mechanisms allow kernel-mode processes to inform one
another about relevant events, and they also ajlow events to be generated
by device drivers or by the networking system. Whenever a process wants to
wait for some event to complete, it places itself on rwait queue associated with
that event and tells the scheduler that it is no longer eligible for execution)Once
the event has completed, it will wake up every process on the wait queué This
procedure allows multiple processes to wait for a single event. For example,
if several processes are trying to read a file from a disk, then they will all be
awakened once the data have been read into memory successfully.

Although signals have always been the main mechanism for commu-
nicating asynchronous events among processes, Linux also implements the
semaphore mechanism of System V UNIX. A process can wait ¢t a sermaphore
as easily as it can wait for a signal, but semaphores have two advantages: Large
numbers of semaphores can be shared among multiple independent processes,
and gperations on multiple semaphores can be performed atomicaliy. Inter-
, the standard Linux wait queusmechanism synchronizes processes that

icating with semaphores

750 Chapter 21

21.9.2 Passing of Data Among Processes

Linux offers several mechanisms for passing data among processes. The stan-

d UNIX pipe mechanism allows a child process to inherit a communication
channel from its parent; data written to one end of the pipe can be read at the
othe? Under Linux, pipes appear as just another type of inode to virtual-file-
systeth software, and each pipe has a pair of wait queues to synchronize the
reader and writer. YNiX also defines a set of networking facilities that can send
streams of data to local and remote processes.\Networking is covered in
Section 21.10.

Two other methods of sharing data among processes are available. First,
shared memory offers an extremely fast way to communicate large or small
amounts of data; any data written by one process to a shared memory region
can be read immediately by any other process that has mapped that region into
its address space.(The main disadvantage of shared memory is that, on its own,
it offers no synchronization)A process can neither ask the operating system
whether a piece of shared mémory has been written to nor suspend execution
unti] such a write occurs. Shared memory becomes particularly powerful when
used in conjunction with another interprocess-communication mechanism that
provides the missing synchronization.

A shared-memory region in Linux is a persistent object that can be created
or deleted by processes. Such an object is treated as though it were a small
independent address space. The Linux paging algorithms can elect to page
out to disk shared-memory pages, just as they can page out a process’s data
pages(The shared-memory object acts as a backing store for shared-memory
regiony, just as a file can act as a backing store for a memory-mapped memory
region/ When a file is mapped into a virtual-address-space region, then any
page faults that occur cause the appropriate page of the file to be mapped into
virtual memory. Similarly, shared-memory mappings direct page faults to map
in pages from a persistent shared-memory object. Also just as for files, shared-
memory objects remember their contents even if no processes are currently
mapping them into virtual memory.

21.10

Networking is a key area of functionality for Linux. Not only does Linux
support the standard Internet protocols used for most UNIX-to-UNIX com-
munications, but it also implements a number of protocols native to other,
non-UNIX operating systems. In particular, since Linux was originally imple-
mented primarily on PCs, rather than on large workstations or on server-class
systems, it supports many of the protocols typically used on PC networks, such
as AppleTalk and 1PX.

Internally, networking in the Linux kernel is implemented by three layers
of software:

The socket interface
Protocol drivers

Network-device drivers

21.1¢ . 751

User applications perform all networking requests through the socket
interface. This interface is designed to look like the 4.3 BSDY socket layer, so-
that any programs designed to make use of Berkeley sockets will run on Linux
without any source-code changes. This interface is described in Section A.9.1.
The BSD socket interface is sufficiently general to represent network addresses
for a wide range of networking protocols. This single interface is used in Linux
to access not just those protocols implemented on standard BSD systems but all
the protocols supported by the system.

The next layer of software is the protocol stack, which is similar in
organization to BSD's own framework. Whenever any networking data arrive at
this layer, either from an application’s socket or from a network-device driver,
the data are expected to have been tagged with an identifier specifying which
network protocol they contain. Protocols can communicate with one another
if they desire; for example, within the Internet protocol set, separate protocois
manage routing, error reporting, and reliable retransmission of lost data.

The protocol layer may rewrite packets, create new packets, split or
reassemble packets into fragments, or simply discard incoming data. Ulti-
mately, once it has finished processing a set of packets, it passes them on, up to
the socket interface if the data are destined for a local connection or downward
to a device driver if the packet needs to be transmitted remotely. The protocol
layer decides to which socket or device to send the packet.

All communication between the layers of the networking stack is per-
formed by passing single skbuff structures. An skbuff contains a set of
pointers into a single continuous area of memory, representing a buffer inside
which network packets can be constructed. The valid data in an skbuf f do not
need to start at the beginning of the skbuff’s buffer, and they do not need to
run to the end. The networking code can add data to or trim data from either
end of the packet, as long as the result still fits into the skbuff. This capacity
is especially important on modern microprocessors, where improvements in
CPU speed have far outstripped the performance of main memory. The skbuf f
architecture allows flexibility in manipulating packet headers and checksums
while avoiding any unnecessary data copying.

The most important set of protocols in the Linux networking system is the
TCP/IP protocol suite. This suite comprises a number of separate protocols.
The IP protocol implements routing between different hosts anywhere on the
network. On top of the routing protocol are built the UDP, TCP, and ICMP
protocols. The UDP protocol carries arbitrary individual datagrams between
hosts. The TCP protocol implements reliable connections between hosts with
guaranteed in-order delivery of packets and automatic retransmission of lost
data. The ICMP protocol is used to carry various error and status messages
between hosts.

Packets (skbuffs) arriving at the networking stack’s protocol software are
expected to be already tagged with an internal identifier indicating to which
protocol the packet is relevant. Different networking-device drivers encode
the protorol type in different ways over their communications media; thus, the
protocol for incoming data must be identified in the device driver. The device
driver uses a hash table of known networking-protocol identifiers to look up
the appropriate protocol and passes the packet to that protocol, New protocols
can be added to the hash table as kernel-loadable modules.

752

2111

Chapter 21

Incoming 1P packets are delivered to the IP driver. The job of this layer is
to perform routing. Atter deciding where the packet is destined, it forwards
the packet to the appropriate internal protocol driver to be delivered locally or
injects it back into a selected network-device-driver queue to be forwarded to
another host. It performs the routing decision using two tables: the persistent
forwarding information base (FIB) and a cache of recent routing decisions.
The FIB holds routing-configuration information and can specify routes based
either on a specific destination address or on a wildcard representing multiple
destinations. The FIB is organized as a set of hash tables indexed by destination
address; the tables representing the most specific routes are always searched
first. Successful lookups from this table are added to the route-caching table,
which caches routes only by specific destination; no wildcards are stored in
the cache, so lookups can be made quickly. An entry in the route cache expires
after a fixed period with no hits.

At various stages, the IP software passes packets to a separate section
of code for firewall management—seiective filtering of packets according
to arbitrary criteria, usually for security purposes. The firewall manager
maintains a number of separate firewall chains and allows an skbuff to be
matched against any chain. Chains are reserved for separate purposes: One is
used for forwarded packets, one for packets being input to this host, and one
for data generated at this host. Each chain is held as an ordered list of rules,
where a rule specifies one of a number of possible firewall-decision functions
plus some arbitrary data to match against.

Two other functions performed by the I driver are disassembly and
reassembly of large packets. If an outgoing packet is too large to be queued to
a device, it is simply split up into smaller fragments, which are all queued to
the driver. At the receiving host, these fragments must be reassemnbled, The 1P
driver maintains an ipfrag object for each fragment awaiting reassembly and
an ipq for each datagram being assembled. Incoming frabm(’ntb are matched
against each known ipg. If a match is found, the tracment is added to it;
otherwise, a new ipq is created. Once the final .‘ragWEHt has arrived for a
ipg, a compltely new skbuff is constructed to hold the new packet, and this
packet is passed back into the 1P driver.

Packets identified by the IP* as destined for this host are passed on to one
of the other protocol drivers. The U and TCP protocols share a means of
aqsociating packets with source and destination sockets: Each connected pair
of sockets is uniquely identified by its source and destination addresses and
by the source and destination port numbers. The socket lists are linked onto
hash tables keved on these four address-port values for socket lookup on
incoming packets. The TCP protocol has to deal with unreliable connections, so
it maintains ordered lists of unacknowledged outgoing packets to retransmit
after a timeout and of incoming out-of-order packets to be presented to the
socket when the missing data have arrived.

Linux's secutity model is closelv related to typical UNEX security mechanisms
The security concerns can be classified in two groups:

21.11 753

Authentication. Making sure that nobody can access the system without
first proving that she has entry rights

Access control. Providing a mechanism for checking whether a user has
the right to access a certain object and preventing access to objects as
required

21.11.1 Authentication

Authentication in UNIX has typically been performed through the use of a
publicly readable password file. A user’s password is combined with a random
“salt” value, and the result is encoded with a one-way transformation function
and stored in the password file. The use of the one-way function means that
the original password cannot be deduced from the password file except by
trial and error. When a uset presents a password to the system, the password is
recombined with the sait value stored in the password file and passed through
the same one-way transformation. Tf the result matches the contents of the
password file, then the password is accepted.

Historically, UNIX implementations of this mechanism have had several
problems. Passwords were often limited to eight characters, and the number
of possible salt values was so low that an attacker could easily combine a
dictionary of commonly used passwords with every possible salt value and
have a good chance of matching one or more passwords in the password
file, gaining unauthorized access to any accounts compromised as a result.
Extensions to the password mechanism have been introduced that keep the
encrypted password secret in a file that is not publicly readable, that allow
longer passwords, or that use more secure methods of encoding the password.
Other authentication mechanisms have been introduced that limit the times
during which a user is permitted to connect to the system or to distribute
authentication information to all the related systems in a network.

A new security, mechanism has been developed by UNIX vendors to
address authentication problems. The pluggable authentication modules
(PAM) system is based on a shared library that can be used by any system
component that needs to authenticate users. An implementation of this system
is available under Linux. PAM allows authentication modules to be loaded on
demand as specified in a system-wide configuration fite. Ifa new authentication
mechanism is added at a later date, it can be added to the configuration file,
and all system components will immediately be able to take advantage of it.
PAM modules can specify authentication methods, account restrictions, session-
setup functions, and password-changing functions (so that, when users change
their passwords, all the necessary authentication mechanisms can be updated
at once}.

21.11.2 Access Control

Access control uader UNIX systems, including Linuy, is performed through the
use of unique numeric identifiers. A user identifier (uid) identifies a single user
or a single set of access rights. A group identifier (gid} s an extra identifier that
can be used to identify rights belonging to more than one user.

Chapter 21

Access control is applied to various objects in the system. Every file
available in the system is protected by the standard access-control mecha-
nism. In addition, other shared objects, such as shared-memory sections and
semaphores, employ the same access system.

Every object in a UNIX system under user and group access control has a
single uid and a single gid associated with it. User processes also have a single
uid, but they may have more than one gid. If a process’s uid matches the uid
of an object, then the process has user rights or owner rights to that object.
If the uids do not match but any of the process’s gids match the object’s gid,
then group rights are conferred; otherwise, the process has world rights to the
object.

Linux performs access control by assigning objects a protection mask that
specifies which access modes—-read, write, or execute —are to be granted to
processes with owner, group, or world access. Thus, the owner of an object
might have full read, write, and execute access to a file; other users in a certain
group might be given read access but denied write access; and everybody else
might be given no access at all.

The only exception is the privileged root uid. A process with this special uid
is granted automatic access to any object in the system, bypassing normal access
checks. Such processes are also granted permission to perform privileged
operations, such as reading any physical memory or opening reserved network
sockets. This mechanism allows the kernel to prevent normal users from
accessing these resources: Most of the kernel’'s key internal resources are
implicitly owned by the root uid.

Linux implements the standard UNIX setuid mechanism described in
Section A.3.2. This mechanism allows a program to run with privileges different
from those of the userrunning the program. For example, the 1pr program
{which submits a job onto a print queue} has access to the system’s print queues
even if the user running that program does not. The UNIX implementation ot
setuid distinguishes between a process’s real and effect/ve uid: The real uid is
that of the user running the program; the effective uid is that of the file’s owner.

Under Linux, this mechanism is augmented in two ways. First, Linux
implements the POSIX specification’s saved user-id mechanism, which
allows a process to drop and reacquire its effective uid repeatedly. For security
reasons, a program may want to perform most of its operations in a safe mode,
waiving the privileges granted by its setuid status, but may wish to perform
selected operations with all its privileges. Standard UNIX implementations
achieve this capacity only by swapping the real and effective uids; the previ-
ous effective uid is remembered, but the program’s real uid does not always
correspond to the uid of the user running the program. Saved uids allow a
process to set its effective uid to its real uid and then back to the previous value
of its effective uid without having to modify the real uid at any time.

The second enhancement provided by Linux is the addition of a process
characteristic that grants just a subset of the rights of the effective uid. The
fsuid and fsgid process properties are used when access rights are granted
to files. The appropriate property is set every time the effective uid or gid is
set. However, the fsuid and fsgid can be set independently of the effective ids,
allowing a process to access files on behalf of another user without taking on
the identity of that other user in any other way. Specifically, server processes

21.12 755

can use this mechanism to serve files to a certain user without the process
becoming vulnerable to being killed or suspended by that user.

Finally, Linux provides a mechanism for flexible passing of rights from
one program to another—a mechanism that has become common in modern
versions of UNIX. When a local network socket has been set up between any
two processes on the system, either of those processes may send to the other
process a file descriptor for one of its open files; the other process receives a
duplicate file descriptor for the same file. This mechanism allows a client to
pass access to a single file selectively to some server process without granting
that process any other privileges. For example, it is no longer necessary for a
print server to be able to read all the files of a user who submits a new print
job; the print client could simply pass the server file descriptors for any files to
be printed, denying the server access to any of the user’s other files.

2112

Linux is a modern, free operating system based on UNIX standards. It has been
designed to run efficiently and reliably on common PC hardware; it also runs
on a variety of other platforms. It provides a programming interface and user
interface compatible with standard UNIX systems and can run a large number of
UNIX applications, including an increasing number of commerciaily supported
applications,

Linux has not evolved in a vacuum. A complete Linux system includes
many components that were developed independently of Linux. The core
Linux operating-system kernel is entirely original, but it allows much existing
free UNIX software to run, resulting in an entire UNIX-compatible operating
system free from proprietary code.

The Linux kernel is implemented as a traditional monolithic kemel for
performance reasons, but it is modular enough in design to allow most drivers
to be dynamically loaded and unloaded at run time.

Linux is a multiuser system, providing protection between processes and
running multiple processes according to a time-sharing scheduler. Newly
created processes can share selective parts of their execution environment
with their parent processes, allowing multithreaded programming. Interpro-
cess commuunication is supported by both System V mechanisms— message
queues, semaphores, and shared memory-—and BSD’s socket interface. Multi-
ple networking protocols can be accessed simultaneously through the socket
interface.

To the user, the file system appears as a hierarchical directory tree that obeys
UNIX semantics. Internally, Linux uses an abstraction layer to manage multiple
different file systems. Device-oriented, networked, and virtual file systems are
supported. Device-oriented file systems access disk storage through a page
cache that is unified with the virtual memory system.

The memory-management system uses page sharing and copy-on-write
to minimize the duplication of data shared by different processes. Peges are
loaded on demand when they are first referenced and are paged back out to
backing store according to an LFU algorithm if physical memory needs to be
reclaimed.

756

Chapter 21

21.1

21.2

213

21.4

21.6

21.7

21.8

21.9

21.10

2111

What are the advantages and disadvantages of writing an operating
system in a high-level language, such as C?

In what circumstances is the system-cail sequence fork () exec () most
appropriate? When is vfork() preferable?

Linux runs on a variety of hardware platforms. What steps must the
Linux developers take to ensure that the system is portable to different
processors and memory-management architectures, and to minimize
the amount of architecture-specific kernel code?

What are the advantages and disadvantages of in.xking only some of the
svmbols defined inside a kernel accessible to a loadable kernel module?

Diccuss how the clone{) operation supported by Linux is used to
support both processes and threads,

Would ene classify Linux threads as user-level threads or as kernel-level
threads? Support vour answer with the appropriate arguments.

The Linux scheduler implements soff real-time scheduling. What fea-
tures necessary for certain real-time programming tasks are missing?
How might they be added to the kernel?

Under what circumstances would an user process request an operation
that results in the allocation of a demand-zero memory region?

In Linux, shared libraries perform many operations central to the
operating system. What is the advantage of keeping this functionality
out of the kernel? Are there any drawbacks? Explain your answer.

The directory structure of a Linux operating system could comprise of
files corresponding to different file systems, including the Linux / proc
file system. What are the implications of having to support different
file-system types on the structure of the Linux kernel?

The Linux source code is freely and widely available over the Iinternet or
from CD-ROM vendors. What are three implications of this availability
for the security of the Linux system?

The Linux system is a product of the Internet; as a result, much of the
available documentation on Linux is available in some form on the Internet.
The following key sites reference most of the useful information available:

The Linux Cross-Reference Pages at http:/ /Ixrlinux.no/ maintain current
listings of the Linux kernel, browsable via the Web and fully cross-
referenced.

Linux-HQ at http: / / www.linuxhg.com/ hosts a large amount of informa-
tion relating to the Linux 2.x kernels. This site also includes links to the

757

home pages of most Linux distributions, as well as archives of the major
mailing lists.

The Linux Documentation Project at htip:/ /sunsiteuncedu/linux/ lists
many books on Linux that are available in source format as part of the Linux
Documentation Project. The project also hosts the Linux Hoew-Te guides,
which contain a series of hints and tips relating to aspects of Linux,

The Kernel Hackers” Guide is an Infernet-based guide to kernel
internals in general. This constantly expanding site is located at
http:/ / www.redhat.com:8080/HyperNews/ get/khg html.

The Kernel Newbies website (http:// www.kernelnewbies.org /) provides
a resource for introducing the Linux kernel te newcomers.

Many mailing lists devoted to Linux ave also available. The mostimportant
are maintained by a mailing-list manager that ran be reached at the c-mail
address majordomo@vger . rutgers. edu. Send e-mail to this address with the
single line “help™ in the mail’s body for information on how to access the list
server and to subscribe to any lists.

Finally, the Linux system itself can be obtained over the Internet. Complete
Linux distributions can be obtained from the home sites of the companies
concerned, and the Linux community also maintains archives of current system
components at several places on the Internet. The most important are these:

ftp:/ /tex-11.mit.edu/pub/linux/
ftp:/ /sunsite.unc.edu/pub/Linux/
ftp:/ /linux.kernel.org/pub/linux/

In addition to investigating Internet resources, you can read about the
internals of the Linux kernel in Bovet and Cesati |2002] and Love [2004].

